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Abstract—In this paper, a neural network based approach to
the electromagnetic (EM) simulation and optimization of high-
speed interconnects is discussed. Traditional techniques used to
model interconnects in high-speed very large scale integration
(VLSI) circuits are based on EM-field simulation, and are thus
highly demanding on central processing unit (CPU) resources.
This limits their suitability for computer-aided design (CAD) and
optimization techniques which are, in general, iterative in nature.
Neural networks can be used to map the complex relationship
between the physical and electrical parameters of interconnect
structures in an efficient manner. The models, once developed,
operate with minimal on-line CPU resources and are thus ideally
suited for use in iterative CAD and optimization routines.

Index Terms—Modeling, neural networks, optimization, simu-
lation, VLSI interconnects.

I. INTRODUCTION

T HE SIMULATION and optimization of the interconnect
structures in any high-speed digital system are an essen-

tial part of design and optimization in order to ensure proper
performance. Several important signal integrity characteristics,
such as signal propagation delay, crosstalk, and ground-bounce
noise have been identified to be dependent on the interconnect
networks and circuits present in the system [1]–[3].

High-speed interconnect analysis is at present a highly
central processing unit (CPU) intensive task, characterized by
long run-times and large memory requirements. This is due to
two main factors. Firstly, the use of an interconnect model in a
computer-aided design (CAD) or optimization routine is highly
repetitive, as the number of interconnects in any very large
scale integration (VLSI) system is extremely large. This is
compounded by the fact that most CAD/optimization methods
currently used are based on iterative techniques, where a given
circuit, or objective function is repeatedly evaluated on-line
until an optimal solution is obtained. Typical examples of
such techniques, as described in papers such as [4]–[6], and
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implemented in tools such as [7], are simulated annealing,
-based optimization, gradient-based methods, Monte Carlo

techniques, statistical/yield analysis, etc. Thus, it is apparent
that the on-line time required for the convergence of these
techniques is dependent on the efficiency and run-time of
models employed.

Secondly, interconnect analysis at high frequencies must
be done using distributed-parameter models, such as the
transmission-line equation, as lumped-element techniques
cease to be accurate. Distributed parameter models are based
on the per-unit-length resistance, inductance, capacitance,
and conductance (RLCG) matrices of the interconnect
structure. These parameters are not constant at relatively
high frequencies, but are frequency-dependent, and must be
determined from the physical structure of the interconnects
before the transmission-line equation models can be applied
[8]. This is referred to asmodeling of interconnects. Once
these parameters are determined, the high-speed circuit can
be simulated to obtain its signal integrity characteristics such
as propagation delay and crosstalk. This is referred to as
simulation of interconnects, and is done at the level of the
circuit treating interconnects as distinct components between
the driving sources and terminations which comprise the
high-speed system.

Modeling of lossy interconnects is done by electromagnetic
(EM) simulation techniques, which involve the numerical sim-
ulation of Maxwell’s equations or variants thereof. Full-wave
three-dimensional (3-D) EM analysis, being approximation
free, gives very accurate results, but is highly CPU-intensive,
and thus is not feasible for on-line use in large scale CAD
and optimization techniques. Techniques used are extensively
described in [8]–[12].

Much research has gone into the electrical simulation of
interconnects, and several techniques have been developed.
These include the resistance–capacitance (RC) tree represen-
tation of the interconnect, and the two-pole approximation
method [13], [14]. But as these are based on approximations
and have underlying assumptions, they compromise accuracy
in the process of providing speed. This renders them unde-
sirable from an optimization point of view, as the results of
optimization are dependent upon the accuracy of the models
employed. Recent advances in simulation techniques such as
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[15]–[19], have substantially lowered the run-time associated
with interconnect analysis, but still cannot provide the simu-
lation speed necessary for exhaustive iterative optimization.

The unavailability of interconnect techniques suitable for
on-line iterative CAD/optimization routines has prompted the
use of many fast, simple on-line techniques such as polynomial
curve-fit techniques and look-up tables, based on data obtained
by extensive off-line simulation. Papers such as [20], [21]
report the use of empirical models and curve-fit techniques
in interconnect analysis. However, curve-fit techniques are
generally capable of handling only mild nonlinearity, and a
few variables at a time.

Table look-up techniques have also been used to reduce
the on-line CPU requirements of interconnect analysis [22].
These techniques are fast, as the on-line time requirement is
the trivial time taken for a query on the table. However, they
suffer from the following inherent shortcomings:

• size of a table grows exponentially with the addition of
each new variable; hence, the memory requirements are
large;

• every entry in the table requires a simulation or measure-
ment to be performed;

• tables are cumbersome to maintain and upgrade, and
hence, are not very robust. This is because the size of a
table depends on the input space, and that new parameters
cannot be added easily. To increase the accuracy, the
number of points must be increased so there is a larger
number of input points defining each input dimension;

• interpolation of points in a look-up table is a highly
localized operation, where only data points in the neigh-
borhood of the value required are used, as opposed to the
entire surface of the input–output (I/O) relationship.

In this paper, a neural network approach to the EM sim-
ulation and optimization of high-speed interconnects and in-
terconnect circuitry is presented. Neural networks have been
applied to several design problems in CAD and modeling
in the recent past, as reported in [23]–[28]. In [23], neural
network applications such as modeling the characteristics of
electronic devices, and the statistical analysis and optimization
of circuits were treated. Others such as [24], [25] have shown
that problems involving static electrical characteristics and
those with a relatively small input space can be effectively
handled by the neural network technique. The intent of this
paper is to demonstrate that neural networks are also highly
suitable for EM-based simulation and optimization, especially
given the lack of efficient on-line techniques in this area
and the immediacy of the problem. The low run-time and
memory requirements and relative simplicity in comparison to
traditional modeling and simulation approaches suggest that
neural networks are a feasible technique for efficient high-
speed interconnect modeling.

In the following section, the high-speed interconnect prob-
lem is formulated mathematically, first in general terms, based
on existing simulation approaches, then in terms of the pro-
posed neural network based approach. Section III describes in
detail how the neural network model is implemented, trained,
and validated. The training process is treated mathematically

and the main issues and parameters associated with neural
network techniques are discussed. In Section IV, several ex-
amples which cover various issues in CAD and optimization of
high-speed interconnects demonstrate how the neural network
model developed in Sections II and III is implemented and
used. Section V offers an evaluation of the performance of
the neural network technique, and a discussion of the results
obtained. A brief summary and conclusion are given in Section
VI.

II. PROBLEM FORMULATION: THE HIGH-SPEED

INTERCONNECT MODEL

The objective is to create a model which can be used on-line
in iterative CAD/optimization routines, capable of mapping
the relationship between the set of parameters defining the
physical configuration of a network or group of interconnects
in a VLSI system and its operational characteristics, and the
set of parameters which can be used to analyze the signal
integrity of the system.

Mathematically,

(1)

where is an -dimensional output vector representing the
parameters to be modeled or simulated, such as the RLCG
matrices of the network, the signal propagation delays at
the terminations, crosstalk, level of ground-bounce noise,
etc., and is the -dimensional input vector containing all
the variables and parameters necessary to obtain. Typical
parameters in the input set are the physical dimensions of
the interconnects and their dielectric substrate characteristics,
topology of the interconnect network, input signal characteris-
tics such as voltage level, frequency of operation (or rise time
in the case of a digital signal), termination impedance of the
interconnects, etc., as shown in Fig. 1. The input vectorin
traditional techniques is often not an explicit parameterization
of all the input variables. This is especially true for variables
such as network topology, which is defined implicitly in the
netlist of a circuit.

The function is that which relates to in the model
used on-line during CAD or optimization. Ideally, should be
simple, easy to evaluate, and have low memory requirements.
It is in this function that the neural network approach differs
from traditional approaches.

A. Traditional Techniques

In traditional modeling and simulation techniques as de-
scribed in Section I, is evaluated using an electrical analysis
tool, such as asymptotic waveform evaluation (AWE), nu-
merical inversion of Laplace transforms (NILT), etc., or EM
simulation. The relationship is often not explicit, and can
involve netlisting, numerical simulation, and the extraction or
separate calculation of the output. For example, if propagation
delay or signal ringing is a parameter in, it is calculated
after transient analysis of the circuit is performed.can also
be a polynomial relationship in curve-fit techniques, or query,
or search routine on a look-up table.
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Fig. 1. General structure of the model to be developed.

B. The Neural Network Approach

In the neural network approach, the functionis mapped
using a neural network.

A feed forward neural network can be described as a
mathematical tool which is capable of nonlinear mapping in
high dimension [29]. The input space, of dimension
is mapped to the -dimensional output space represented as
a layer of neurons, through a hidden layer. This hidden
layer has a fixed number of neurons,, which can vary from
problem to problem as will be discussed in the following
section. The output of any given neuron is the weighted linear
combination of the outputs of all the neurons in the previous
layer reflected off a nonlinear transfer function, the most
commonly employed being the sigmoid. The neural network
is pictorially represented in Fig. 2.

Mathematically, the neural network can be described as the
mapping of the set of input vectors, whose th sample is

(2)

to the corresponding output vector

(3)

through a system of weighting factors and biases, which are
defined as , , for and ,
and , , for and , such
that the outputs are

(4)

where

(5)

Here, is the sigmoidal transfer function, and is the
output of the th neuron in the hidden layer, calculated as

(6)

Fig. 2. The neural network model. All inter-neuronal connections are made
with weights and all neurons have biases.

where

(7)

It is seen that is now related to by a set of sample
data. If the set of samples is chosen
such that it is representative of the entire I/O space, then the
objective mapping function is in effect learned by the neural
network. Since the relationship expressed in (4)–(7) has only
used two basic arithmetic operations, i.e., the sum of products
and exponentiation, the run-time required to calculate
is trivially small.

III. I MPLEMENTATION OF THE NEURAL NETWORK MODEL

A. Configuration of the Neural Network Model

The three components of the neural network model are as
follows.

1) The Input Layer:The input layer of the neural network
consists of nodes, representing the elements of thevector.
This must contain all the necessary information and variables
required to uniquely map , in an explicitly parameterized
form. In particular, variables such as the layout topology
of an interconnection network, which are implicit in netlist
approaches, must be quantified numerically.

The authors have chosen to quantify network topology using
graph theory, by representing the interconnection network as a
minimum spanning tree, rooted at the source, or any other pin
of interest. The set of variables which represent the nodes
at which a given interconnect has commenced (the source
vertices of the edges of the rooted spanning tree describing the
network) uniquely represents the network configuration [27].

2) The Output Layer:The output layer consists of neu-
rons, each representing one of the elements in thevector.
The output of a neuron varies between 0 and 1, which are the
asymptotic limits of the sigmoid transfer function, as given
in (5). Hence, the entire output space must be scaled to vary
between 0 and 1.
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3) The Hidden Layer:The number of neurons in the hid-
den layer is taken to be, the choice of the value of being
dictated by the complexity of the problem. A highly complex
I/O relationship would require a higher number of neurons
in the hidden layer, as each additional neuron provides an
additional degree of freedom during mapping. However, a
neural network with a large value ofwould require a larger
training time, and would unnecessarily increase the size
of the model, measured as the total number of weights and
biases in the neural network

(8)

So as small a as would allow for correct mapping of the
I/O relationship is used.

a) The size of the hidden layer:Deciding the size of the
hidden layer is a critical part of the designing of a neural net-
work model. Unfortunately, there are no established methods
to decide the appropriate number of hidden neurons required
for a given problem. In general, for the models developed in
this paper, the number of hidden neurons was decided based
on the following:

• size of the input space, which was more critical than the
size of the output space (especially when the outputs vary
with respect to the inputs in a similar fashion). As will
be seen in the examples, Examples A–C have the same
number of hidden neurons, even though the number of
outputs increases;

• complexity of the problem. The problem mapped in
Example D is more complex than the earlier ones, due
to the fact that it has both continuous and discrete inputs.

B. Training

The training of the neural network is the process during
which the neural network learns the relationshipbetween the
input and output samples presented to it. This relationship is
learned over severaltraining epochs, in which a large set of I/O
data is repeatedly presented to the neural network. The weights
and biases in (4)–(7) are adjusted such that the error between
the outputs as predicted by the neural network and the outputs
of the training set is minimized. The algorithm employed is
based on the classical multilayered backpropagation algorithm,
and is described as follows. The algorithm has been described
in [23], and can also be found in several reference books such
as [29]. It is briefly outlined here for the sake of completeness.

For a given set of input data, say
whose corresponding output set is, if the neural network
predicts the output to be , the batch-mode backpropagation
error is defined as

(9)

where represents the individual mean-squared error of the
th sample. is the error to be minimized during training.

After each training epoch, during which the set of data
points is presented to the network, this error is determined,
and the weights and biases are updated in the general direction

of error minimization. The update equations for theth epoch,
with momentum and learning rate are

(10)

(11)

(12)

(13)

The error sensitivities in the above equations are calculated
using the following equations:

(14)

where the term , given by

(15)

represents the local gradients at theth neuron in the output
layer for the th sample

(16)

(17)

(18)

The parameter, known as the learning rate, is an important
training parameter representing the step size of the error
convergence process. A small value ofaffords stability but
increases training time, while a large value ofdecreases
the stability of the training process.is shown in the update
equations as being a function of the backpropagation error,
meaning it is normally adaptive in nature, assuming a small
value when far away from the solution, during which the value
of is large, and a relatively larger value when closer to the
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solution, i.e., when the backpropagation error is small. The
value of is normally taken to be between 0.1–0.5.

The term in the update equations is called the momentum,
and adds an inertial element to the training process, ensuring
that the update occurring is a fraction of the previous change.
This helps avoiding local minima on the error surface.
normally assumes a positive value less than 1.

Using the above equations, the backpropagation training
algorithm can be summarized in the following steps.

Step 1) Initialization: Select random initial values for the
weights and biases , , , and lying in the range of

0.5 and 0.5.
Step 2) Presentation:Present the training set

to the neural network.
Step 3) Forward Pass:Compute the corresponding neural

network output vector using (4)–(7).
Step 4) Update:Compute the batch backpropagation error

from (9), the error sensitivities using (14)–(18), and update
the weights using (10)–(13).

Step 5) Termination Condition Check:If is less than a
specified tolerance value end training, else update learning rate
(if necessary) and return to Step 2.

A more detailed description of the training algorithm can
be found from Haykin’s book [29]. For the applications
presented in this paper, the Matlab implementation of the
backpropagation algorithm [30] was employed.

C. Data Generation

In order to train and validate the neural network, two sets
of data are required. The first set, namely the training set, is
a set of data points representing randomly chosen inputs to
the model and their corresponding outputs. The number of
data points needed in the training set is dependent upon the
following:

• number of neurons in the hidden layer;
• dimensionality of the problem, particularly dimensionality

of the input space;
• complexity of the relationship between input and output.

Though a larger training set would give a better represen-
tation of the I/O space to be modeled, too large a training set
would result in a needless increase in the time invested in data
generation and training. Hence, as small a data set as would
fairly represent the entire range of operation of this model is
used.

The training set data are obtained through repeated off-
line simulation using an accurate simulation technique; either
an electrical CAD tool or an EM-field solver, such as those
previously described, depending on the nature of the outputs.
The simulator is repeatedly called, each time with a netlist
incorporating input variables randomly chosen from the input
space as shown in Fig. 3. Two files of data are thus obtained,
the input vector and the corresponding output vector, which
constitute the training set. This is used in training the model.
The training set can also be obtained as a collection of data
from actual measurements, or from a look-up table if available.

The second set of data, called the test set, is obtained in a
manner identical to that described above and is used to test

Fig. 3. Algorithm used for generation of training and test data.

the accuracy of the model during and after training. The test
set should be large enough to be representative of the entire
input space, and its contents should be different from those of
the training set. The test set is used solely for the purpose of
validation of the model.

1) The Size of Training and Test Data Sets:The sizes of
the training and test data sets depend on the size of the neural
network, especially the input and hidden layers. These reflect
the complexity of the problem. While training proceeds, if it
is found that there is insufficient error convergence, or that the
test error is significantly higher than the training error, it is
indicative that the training set is not large enough, and should
be made larger. It is seen that in the models developed in this
paper, the size of the output vector is less important than that
of the input in determining the size of the training and test
data sets. This is seen in Examples A–C. This is because the
output characteristics as functions of the input are generally of
the same shape, though they differ in quantitative values. So
the trend of variation of the output with respect to the input
learnt with a smaller number of outputs (Example A) is the
same as with a larger number outputs (Example C), so the
size of the data sets remained the same.

D. Model Validation

The model is validated at the end of training, as well as
periodically during the training process with both the training
set and the test set. The rms error for theth sample of the
training or test set is defined as

(19)

where is the number of outputs of the neural network, is
the output as given by the neural network for theth sample,

is the corresponding actual output of the simulator, and
is the arithmetic mean of the absolute values of allth output
points over the entire space

(20)
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Fig. 4. Cross section of three parallel interconnects (Example A).

The average (test/training) error of validation is given as the
arithmetic mean of the individual errors over the (test/training)
set, i.e.,

Average Error (21)

where is the total number of samples in the set. It should
be noted that the validation error is different from the back-
propagation error given in (9), which is only used in the
backpropagation training algorithm.

The average test error is a good indication of how well the
neural network has learned the relationship . The
neural network is validated periodically during training with
the test set to ensure that the network is notoverlearning,
which is when the mapping is being concentrated too much
on the specific data points of the training set rather than the
general function. When overlearning starts, the average test
error begins to increase though the average training error and
backpropagation error continue to decrease.

Once developed, the model can be used to accurately
calculate the desired output for any given set of inputs.

IV. A PPLICATIONS AND NUMERICAL EXAMPLES

A. Three Parallel Coupled Interconnects

In this first example, a configuration of three parallel inter-
connects, the cross section of which is shown in Fig. 4, is mod-
eled for its frequency-dependentand parameters. During
design optimization, each individual configuration would vary
in terms of the thickness and width of the interconnects, the
height of the dielectric, the separation between the center
conductors, and the frequency of operation. Hence,

(22)

The ranges of the individual input variables are given in
Table I. The outputs of the model are the elements of the
and matrices

TABLE I
NEURAL NETWORK INPUT PARAMETERS AND THEIR RANGE (EXAMPLE A)

Fig. 5. Average training error as training proceeded for Example A.

and

The total number of and parameters to be simulated is
18. Since the interconnects are identical in physical dimension
and have symmetric cross sections, one needs to consider only

, , , , , and , from which the entire
and matrices can be constructed. Hence,

(23)

The other per-unit-length parameters of the structure,and
would be modeled in a manner identical to that ofand .
The neural network model is implemented with features as

shown in Table II, which shows the number of inputs, outputs,
and hidden neurons. The technique used to generate data was
by off-line simulation using Northern Telecom’s SALI, an EM-
field solver [31]. However, any EM technique, such as those
described in Section I can be used. Training proceeded on a
Sun SPARCstation 10, the test error continually decreasing
until it leveled off at about 0.017. The average training error
as training proceeded is plotted against time in Fig. 5. The test
error, sampled periodically during training, followed the same
curve as the training error; however, it was marginally higher.
The average test error was 0.0174 at the end of training.

The neural network model was found to estimate theand
parameters with an accuracy comparable to the field solver
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TABLE II
FEATURES OF THE NEURAL NETWORK MODELS DEVELOPED

Fig. 6. Test error for 100 random inputs from the test set (Example A).

Fig. 7. C13 as a function of separation, keeping other parameters constant
in Example A.

used. The average test error in the results when these parame-
ters were modeled for 100 random circuit configurations from

Fig. 8. Two asymmetric microstrip lines (Example B).

Fig. 9. Eight-bit bus on a printed circuit board (PCB), showing region of
high crosstalk and signal noise.

the test set are plotted in Fig. 6. Fig. 7 shows one of the
outputs, , plotted against a varying width of separation
as estimated by the neural network model and the EM-field
solver.

B. Two Asymmetric Interconnects

The and parameters of an asymmetric configuration of
two parallel interconnects, as shown in Fig. 8 are treated in
this example. The input variables are identical to those in the
previous example except that the width of the two conductors
must be given separately

(24)

Their ranges are as given in Table I. As in the previous
example, EM simulation is used to obtain the and
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Fig. 10. Cross section of eight-bit digital bus.

parameters during off-line data generation. There are eight
outputs, namely the elements of the and parameter
matrices

(25)

Table II shows the features of the neural network developed.
The accuracy of the neural network model was in the range
of the EM simulator.

C. An Eight-Bit Digital Bus Configuration

In this example, an eight-bit bus configuration as shown
in Fig. 9, the cross-sectional view of which is shown in Fig.
10, is modeled. In the region between the I/O pads and the IC
pin’s to which the inputs are connected, the eight interconnects
run parallel to each other. This is a region of high crosstalk
and noise due to the eight metallic conductors, and is thus
especially critical in layout design.

A digital bus is inherently symmetric in structure, and
consists of conductors of identical physical cross section. The
inputs of the model and their ranges are exactly the same as
in the first example, as given in Table I.

The outputs modeled in this case are the elements of the
and parameter matrices, each of which contains 64

elements. However, since the interconnects are identical in
physical dimension, width of separation, and have symmetric
cross sections, the 8 8 matrices are symmetric about both
diagonals. Thus the entire matrix can be constructed from
( ), and 16 other values. Similarly, the matrix can be
built from ( ), and 16 other elements in the matrix. Further,
in the case of the inductance matrix, the values of the elements
farthest apart, namely , , , and are extremely
small and, hence, are set to a nominally low average value.
The matrix is represented as

(26)

Fig. 11. The values of capacitances between conductors 1 andn (Example
C).

where the elements with bars are fixed at nominally average
values and not separately modeled. Thematrix is similar
to the matrix, except that all parameters are modeled.
Hence, the number of outputs for the neural network are 17

elements and 13 elements, resulting in a total of 30.
The main features of the neural network developed are

tabulated in Table II. It was capable of accurately predicting
the and parameters. Fig. 11 shows the values of the
capacitances in a given configuration as one moves away from
the first conductor on the left, i.e., the values on the first row
of the matrix. Fig. 12 shows the error on 100 random input
points of test data.

D. A Network of Four Interconnects on a
Printed Circuit Board (PCB)

Here, a model to simulate the propagation delays of a signal
propagating in a network of interconnects on a PCB, a typical
section of which is shown in Fig. 13, is developed. One IC
pin acts as a source, from which a digital signal is transmitted
to several other receiver (driven) IC pin’s. The number of
pin’s connected to a given driver is related to the fan-out
of a typical pin in a digital IC. This model treats drivers
connected to four pin’s. The electrical equivalent circuit of
the interconnects of Fig. 13 is shown in Fig. 14. A typical
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Fig. 12. Test error for 100 random inputs from the test set for Example C.

Fig. 13. A typical interconnect network with IC pin’s connected by several
interconnects.

PCB would consist of several hundreds of such configurations.
During layout optimization of such a PCB, each individual
interconnect network would vary in terms of its driver (source)
characteristics, its receiver pin load characteristics, the lengths
of the interconnects, and the network topology. The input
variables to this problem along with their ranges of variation
are given in Table III:

for

and (27)

The outputs of the model are the propagation delays at the
four terminations, propagation delay being measured as the
time taken for the signal to reach 80% of its steady state value

for (28)

The number of inputs, outputs, and the number of hidden
neurons chosen for the neural network model are shown in

Table II. Due to the large dimensionality of the problem, as
well as the nature of the input variables, the topology variables
in particular, a relatively high number of training and test
data points is used. Off-line data generation is done using
NILT [32], which is a circuit simulation technique employed
in several industrial environments. Training proceeded on a
Sun SPARCstation 10, the test error continually decreasing
until it leveled off at about 0.04.

This example forms the basis of a neural network inter-
connect simulator which can be used in propagation delay
analysis. Based on the same principle, models for different
sizes of networks (two to six) were built in [28], and used
to construct an interconnect network simulator. Substantial
speed-ups were seen to be obtained over existing techniques,
especially in an optimization environment when a large num-
ber of circuits must be simulated. The speed-ups achieved
and their significance with regards to circuit simulation and
optimization are discussed in the following section.

V. DISCUSSION OFRESULTS

A. Run-Time Comparison

In this section, the on-line run-time requirements of the
neural network models are compared with existing simulation
techniques.

The run-time requirements are compared with other tech-
niques using the time required to simulate a specific number of
circuit configurations. During each iteration of the optimization
routine, the model is called once for every occurrence of the
structure in the system. A conservative estimate of the number
of times an interconnect model is to be called during optimiza-
tion, in an IC placement-oriented interconnect problem such as
described in [6], to obtain a reasonably, if not globally, optimal
solution in an optimization problem is taken as 20 000.

In Table IV, the run-time required for estimating theand
parameters of 20 000 different interconnect structures of the

type modeled in Examples A–C, by EM simulation and by the
neural network technique are reported. A substantial speed-up
is seen.

Table V shows a comparison of run-time for electrical
simulation of 20 000 PCB structures as modeled in Example
D. The neural network technique is compared to two other
currently used simulation techniques, AWE [15] and NILT.
The speed-up ratio obtainable by using neural networks over
the existing technique is shown in brackets.

B. Performance Evaluation

From the above examples, it is apparent that neural networks
overcome many of the limitations of traditional simulation
techniques. The most significant advantage is the substantial
on-line speed-up offered. This permits designers to be much
more liberal in defining critical paths to be tested and opti-
mized, and in the number of iterations that are to be performed
in the optimization routine. Using neural networks as a fast,
on-line simulation tool can allow exhaustive optimization
routines to be performed without too much concern over the
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Fig. 14. Electrical equivalent of interconnect configuration, showing the outputs of the model (Example D).

TABLE III
RANGE OF INPUT PARAMETERS TO THE NEURAL NETWORK MODEL

TABLE IV
COMPARISON OF RUN-TIME REQUIREMENTS FORNEURAL

NETWORK MODEL AND EM SIMULATION (EXAMPLE D)

TABLE V
COMPARISON OFRUN-TIME FOR DELAY SIMULATION (EXAMPLE D)

time required for convergence, which is a major concern with
existing techniques.

A neural network can be developed for any defined cross
section which might be encountered during layout optimiza-
tion, irrespective of size or the number of conductors. Memory
requirements are not high, and do not grow exponentially with
the number of inputs or outputs added as a look-up table

would. In the above examples, the number of data points
required in the training and test sets were relatively lower
than the number of data entries which would be required to
construct a look-up table for the same problem and range of
variation. Given that the input spaces of the examples had
dimensions varying from 5 (Example A) to 18 (Example D),
the size of the tables required for these problems would have
been very large, as each dimension of the input space would
cause the table size to grow exponentially. For example, in
order to construct a look-up table for Example D, which had
18 inputs, even with three uniformly-spaced points along each
dimension, a total of 3 data points would be required, which
is notably larger than the 9000 points needed to train and test
the neural network model.

The run-time memory requirements of simulation using
neural network modeling techniques is also significantly lower
than using tables or EM simulation techniques. EM simulation
programs based on methods such as FEM allocate large
amounts of memory during run-time to evaluate structures with
large cross sections, and cannot be executed if such machine
resources are not available. This limitation is overcome by
neural networks, where the memory requirements, given by
the sizes of the models, are significantly smaller.

The large number of variables that a neural network is
capable of simultaneously handling make neural networks
a viable alternative over polynomial curve-fit techniques. In
Example C, 30 output variables were mapped simultaneously.
In Example D, the number of inputs considered was 18.
High-order polynomial curve-fitting with 18 independent input
variables would prove to be significantly more difficult than
using neural networks. Low-order polynomial models such as
quadratic models in 18 variables would have a much lower
range of validity than a neural model.

VI. SUMMARY AND CONCLUSIONS

A neural network based approach to the characterization
of high-speed interconnects, preserving the accuracy of ex-
isting techniques yet simplifying their CPU requirements has
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been presented. The general technique used for developing
neural network models for interconnects and interconnection
networks presented in this paper can be employed to effec-
tively model almost any kind of interconnect configuration or
problem one might come across in high-speed VLSI design.
The examples discussed show the potential advantages neural
networks have over existing techniques, and the CPU resource
savings attainable. The low on-line run-time neural network
models allow IC designers to perform much more elaborate
CAD and optimization, thereby producing better design and
yielding results, without expending the large amounts of CPU
resources which would be required if existing techniques were
used.
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