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Abstract—In this paper, a neural network based approach to implemented in tools such as [7], are simulated annealing,
the electromagnetic (EM) simulation and optimization of high- 7 -based optimization, gradient-based methods, Monte Carlo

speed interconnects is discussed. Traditional techniques used toyg opnigues, statisticallyield analysis, etc. Thus, it is apparent
model interconnects in high-speed very large scale integration ’ ’ ’

(VLSI) circuits are based on EM-field simulation, and are thus that the on-line time required for the convergence of these
highly demanding on central processing unit (CPU) resources. techniques is dependent on the efficiency and run-time of
This limits their suitability for computer-aided design (CAD) and  models employed.

optimization techniques which are, in general, iterative in nature. Secondly, interconnect analysis at high frequencies must

Neural networks can be used to map the complex relationship . -
between the physical and electrical parameters of interconnect be done using distributed-parameter models, such as the

structures in an efficient manner. The models, once developed, transmission-line equat'_on’_ as lumped-element techniques
operate with minimal on-line CPU resources and are thus ideally cease to be accurate. Distributed parameter models are based

suited for use in iterative CAD and optimization routines. on the per-unit-length resistance, inductance, capacitance,
Index Terms—Modeling, neural networks, optimization, simu- and conductance (RLCG) matrices of the imercon”.eCt
lation, VLSI interconnects. structure. These parameters are not constant at relatlvely

high frequencies, but are frequency-dependent, and must be
determined from the physical structure of the interconnects
before the transmission-line equation models can be applied
T HE SIMULATION and optimization of the interconnect[g]. This is referred to asnodelingof interconnects. Once
structures in any high-speed digital system are an ess@fse parameters are determined, the high-speed circuit can
tial part of design and optimization in order to ensure propge simulated to obtain its signal integrity characteristics such
performance. Several important signal integrity characteristigg propagation delay and crosstalk. This is referred to as
such as signal propagation delay, crosstalk, and ground-bougg&y|ation of interconnects, and is done at the level of the
noise have been identified to be dependent on the interconngglyit treating interconnects as distinct components between
networks and circuits present in the system [1]-{3]. the driving sources and terminations which comprise the
High-speed interconnect analysis is at present a higrﬂth-speed system.
central processing unit (CPU) intensive task, characterized by;ogeling of lossy interconnects is done by electromagnetic
long run-times and large memory requirements. This is due @\ simulation techniques, which involve the numerical sim-
two main factors. Firstly, the use of an interconnect model indation of Maxwell's equations or variants thereof. Full-wave
compqter-aided design (CAD).or optimizatioq routine is high%ree—dimensional (3-D) EM analysis, being approximation
repet|t|_ve, as _the number of mter_connects In any very _Iar%e’ gives very accurate results, but is highly CPU-intensive,
scale integration (VLSI) system is extremely large. This | nd thus is not feasible for on-line use in large scale CAD

compounded by the fact that. mosfc CAD/op.timization metho- thd optimization techniques. Techniques used are extensively
currently used are based on iterative techniques, where a 9VRR ribed in [8]-[12]
circuit, or objective function is repeatedly evaluated on-line :

il timal solution is obtained. Tvpical | Much research has gone into the electrical simulation of
:SC'h ?ch?r?ilrjs s;)su (jl(e)gcrlisb;d i(’rimea .ersyrgl(j?h Z);arzp 665 0|¥1tgrconnects, and several techniques have been developed.
ques, pap [41-16]. Fhese include the resistance—capacitariR€) (free represen-
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[15]-[19], have substantially lowered the run-time associateghd the main issues and parameters associated with neural
with interconnect analysis, but still cannot provide the simuretwork techniques are discussed. In Section IV, several ex-
lation speed necessary for exhaustive iterative optimizationamples which cover various issues in CAD and optimization of
The unavailability of interconnect techniques suitable fdrigh-speed interconnects demonstrate how the neural network
on-line iterative CAD/optimization routines has prompted theodel developed in Sections Il and Il is implemented and
use of many fast, simple on-line technigues such as polynomisled. Section V offers an evaluation of the performance of
curve-fit techniques and look-up tables, based on data obtaiitieel neural network technique, and a discussion of the results
by extensive off-line simulation. Papers such as [20], [2Dbtained. A brief summary and conclusion are given in Section
report the use of empirical models and curve-fit techniquds.
in interconnect analysis. However, curve-fit techniques are

generally capable of handling only mild nonlinearity, and a Il. PROBLEM FORMULATION: THE HIGH-SPEED

few variables at a time. INTERCONNECT MODEL
Table look-up techniques have also been used to reduce . . .
the on-line CPU requirements of interconnect analysis [22]. The objective is to create a model which can be used on-line

These techniques are fast, as the on-line time requiremenl';i ter?tlye ChA.D/t())pt|m|zat|c;]n routm(fas, capable Og nf1_app|ngh
the trivial time taken for a query on the table. However, the e relationship between the set of parameters defining the

suffer from the following inherent shortcomings: hysical configuration of a network or group of interconnects

in a VLSI system and its operational characteristics, and the

. . . .. |
* size of a table grows exponentially with the addition Ofet of parameters which can be used to analyze the signal

each new variable; hence, the memory requirements %?egrity of the system.
large; _ _ _ , Mathematically,

 every entry in the table requires a simulation or measure-
ment to be performed, Y = F(X) (1)

e tables are cumbersome to maintain and upgrade, and
hence, are not very robust. This is because the size ofvereY is ann-dimensional output vector representing the
table depends on the input space, and that new parameteigameters to be modeled or simulated, such as the RLCG
cannot be added easily. To increase the accuracy, thetrices of the network, the signal propagation delays at
number of points must be increased so there is a larghe terminations, crosstalk, level of ground-bounce noise,
number of input points defining each input dimension; etc., andX is the m-dimensional input vector containing all

* interpolation of points in a look-up table is a highlythe variables and parameters necessary to of¥aifypical
localized operation, where only data points in the neiglparameters in the input set are the physical dimensions of
borhood of the value required are used, as opposed to the interconnects and their dielectric substrate characteristics,
entire surface of the input—output (I/O) relationship.  topology of the interconnect network, input signal characteris-

In this paper, a neural network approach to the EM sinfi€s such as voltage level, frequency of operation (or rise time
ulation and optimization of high-speed interconnects and il the case of a digital signal), termination impedance of the
terconnect circuitry is presented. Neural networks have belfrconnects, etc., as shown in Fig. 1. The input ve3ian
applied to several design problems in CAD and modeliff@ditional techniques is often not an explicit parameterization
in the recent past, as reported in [23]-[28]. In [23], neur&f all the input variables. This is especially true for variables

network applications such as modeling the characteristics $tch as network topology, which is defined implicitly in the
electronic devices, and the statistical analysis and optimizatiBatiist of a circuit. _ _

of circuits were treated. Others such as [24], [25] have shown! € function#"is that which relatesy” to X in the model

that problems involving static electrical characteristics atped on-line during CAD or optimization. Ideall, should be
those with a relatively small input space can be effectivef/TP!e. €asy to evaluate, and have low memory requirements.

handled by the neural network technique. The intent of thh is in this function that the neural network approach differs

paper is to demonstrate that neural networks are also higigm traditional approaches.
suitable for EM-based simulation and optimization, especially
given the lack of efficient on-line techniques in this areA. Traditional Techniques
and the immediacy of the problem. The low run-time and |n traditional modeling and simulation techniques as de-
memory requirements and relative simplicity in comparison ttribed in Section LF is evaluated using an electrical analysis
traditional modeling and simulation approaches suggest thabl, such as asymptotic waveform evaluation (AWE), nu-
neural networks are a feasible technique for efficient highaerical inversion of Laplace transforms (NILT), etc., or EM
speed interconnect modeling. simulation. The relationship is often not explicit, and can
In the following section, the high-speed interconnect prolinvolve netlisting, numerical simulation, and the extraction or
lem is formulated mathematically, first in general terms, basedparate calculation of the output. For example, if propagation
on existing simulation approaches, then in terms of the prdelay or signal ringing is a parameter 1, it is calculated
posed neural network based approach. Section Il describesfter transient analysis of the circuit is performégdcan also
detail how the neural network model is implemented, traineldde a polynomial relationship in curve-fit techniques, or query,
and validated. The training process is treated mathematicadly search routine on a look-up table.
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Qutput modeled
(RLCG Matrices, Propagation Delay, etc)

Output Vector

Neural Network

Signal
Characteristics

Parameters defining
the physical structure

(frequency,  of the interconnect network

risetime, etc.)

Fig. 1. General structure of the model to be developed. Input Vector

Fig. 2. The neural network model. All inter-neuronal connections are made

B. The Neural Network Approach with weights and all neurons have biases.

In the neural network approach, the functinis mapped
using a neural network.

A feed forward neural network can be described as a
mathematical tool which is capable of nonlinear mapping in
high dimension [29]. The input spac& of dimensionm
is mapped to thex-dimensional output space represented as !t is seen thatX is now related toY by a set of sample
a layer ofn neurons, through a hidden layer. This hiddedata. If the set of samples;, &k = 1,2, ---, @ is chosen
layer has a fixed number of neurons,which can vary from such that it is representative of the entire 1/0 space, then the
problem to problem as will be discussed in the followingbiective mapping functiotf is in effect learned by the neural
section. The output of any given neuron is the weighted lineBgtwork. Since the relationship expressed in (4)—(7) has only
combination of the outputs of all the neurons in the previosed two basic arithmetic operations, i.e., the sum of products
layer reflected off a nonlinear transfer function, the mo&nd exponentiation, the run-time required to calcula(&)
commonly employed being the sigmoid. The neural netwofk trivially small.
is pictorially represented in Fig. 2.

Mathematically, the neural network can be described as théll. | MPLEMENTATION OF THE NEURAL NETWORK MODEL

where

Yon = Triwin + bp- (7

=1

mapping of the set of input vectod§, whosekth sample is

Xk = (-Tkla Tk2, ka) (2)
to the corresponding output vector
ye = (1, Yr2, 5 Ykn) 3)

A. Configuration of the Neural Network Model

The three components of the neural network model are as
follows.

1) The Input Layer: The input layer of the neural network
consists ofn nodes, representing the elements of Xheector.
This must contain all the necessary information and variables

through a system of weighting factors and biases, which dfguired to uniquely mag, in an explicitly parameterized

defined asw;p,, by, fori=1,2,---,mandh=1,2,---, p,

andwy;, ¢;, forh =1,2,.--,pandj =1, 2, ---, n, such
that then outputs are
i = () = T oman (4)

where

b
Chj = Z ZEnVnj + ¢ (5)

h=1

Here, f({) is the sigmoidal transfer function, ang, is the
output of thehth neuron in the hidden layer, calculated as

1

14+ e Vkn (6)

Zkh = f(’ykh) =

form. In particular, variables such as the layout topology
of an interconnection network, which are implicit in netlist
approaches, must be quantified numerically.

The authors have chosen to quantify network topology using
graph theory, by representing the interconnection network as a
minimum spanning tree, rooted at the source, or any other pin
of interest. The set of variables which represent the nodes
at which a given interconnect has commenced (the source
vertices of the edges of the rooted spanning tree describing the
network) uniquely represents the network configuration [27].

2) The Output Layer:The output layer consists af neu-
rons, each representing one of the elements inYheector.

The output of a neuron varies between 0 and 1, which are the
asymptotic limits of the sigmoid transfer function, as given
in (5). Hence, the entire output space must be scaled to vary
between 0 and 1.



VELUSWAMI et al. APPLICATION OF NEURAL NETWORKS TO EM-BASED SIMULATION AND OPTIMIZATION OF INTERCONNECTS 715

3) The Hidden Layer:The number of neurons in the hid-of error minimization. The update equations for ttte epoch,
den layer is taken to bg, the choice of the value gf being with momentuma and learning rate) are
dictated by the complexity of the problem. A highly complex

t

/O relationship would require a higher number of neurons v/t = v}, +n(EL,). OFq, +a. (v; — vt (10)
in the hidden layer, as each additional neuron provides an Ovn;
additional degree of freedom during mapping. However, a Wil = gt +q(EL). OEg, + o (wl wg—l) (11)
neural network with a large value pfwould require a larger i i W Dy, Win = Win
training time, and would unnecessarily increase the size 4l at " 8E}w ¢ i1
of the model, measured as the total number of weights and bt =0 n(Ea). by, (b = b (12)
biases in the neural network s . . OE! 1

i =c; +n(Egy)- 5 @+ (cf - cj ). (13)

S=p(m+1)+n(p+1). (8) €

The error sensitivities in the above equations are calculated
using the following equations:

Q n
Z Z Ykj _dkj

k=1 j=1

So as small @ as would allow for correct mapping of the
I/O relationship is used.

a) The size of the hidden layeDeciding the size of the OE,, 1
hidden layer is a critical part of the designing of a neural net- 3 = 8 @
work model. Unfortunately, there are no established methods Uhj Uhj
to decide the appropriate number of hidden neurons required 12
for a given problem. In general, for the models developed in == Z (yik — djr)-yjn- (1 — Yjk)- 2ni
this paper, the number of hidden neurons was decided based Q k=1
on the following: Q

« size of the input space, which was more critical than the Q Z k - Zhk (14)
size of the output space (especially when the outputs vary

with respect to the inputs in a similar fashion). As will o)

be seen in the examples, Examples A-C have the samr(]aere the termS( ‘) given by

number of hidden neurons, even though the number of ) _ 0 _ g , ,

outputs increases; 6jk - (yjk d]k).y]k.(l y]k) (15)

« complexity of the problem. The problem mapped imepresents the local gradients at tith neuron in the output

Example D is more complex than the earlier ones, duayer for the kth sample

to the fact that it has both continuous and discrete inputs.
0B 0 |1 &

B. Training Owr,  Owg, | 2Q el

yjk -
1

The training of the neural network is the process during Q "
yvhich the neural network learns the relatipnsh‘l'm)etwet_-:‘n thg _ —— 7hk — Znk) Z Yik — k .a; (16)
input and output samples presented to it. This relationship is Q =
learned over severdaiaining epochsin which a large set of 1/0 0 n
data is repeatedly presented to the neural network. The weightgav _ 0 | 1 Z Z
and biases in (4)—(7) are adjusted such that the error betweéir; dc;
the outputs as predicted by the neural network and the outputs
of the training set is minimized. The algorithm employed is _l —dj) (1= 1) (17)
based on the classical multilayered backpropagation algorithm, — — Q (Wir = dir)- vjk- Yik
and is described as follows. The algorithm has been described T
in [23], and can also be found in several reference books sudtt’,,, 15}
as [29]. Itis briefly outlined here for the sake of completenessan, — ai,

For a given set of input data, say,, k¥ = 1,2,---,Q
whose corresponding output setds, if the neural network Q n

: . - (1- - . (@8

predicts the output to bg;., the batch-mode backpropagation Z Zhlk- k) Z Yik (18)
error E,,, is defined as k=1 i=1

0 L@ The parameten, known as th_e Iearr]ning rate, .is an fimﬂortant
_ _ 1 1 _ training parameter representing the step size of the error
Eav = Z Ex = Q Z 2 Z iy = )’ ©) convergence process. A small valuespéffords stability but
increases training time, while a large value mpfdecreases
where £}, represents the individual mean-squared error of tllee stability of the training process.is shown in the update
kth sample.E,, is the error to be minimized during training.equations as being a function of the backpropagation &for
After each training epoch, during which the set @fdata meaning it is normally adaptive in nature, assuming a small
points is presented to the network, this error is determinedalue when far away from the solution, during which the value
and the weights and biases are updated in the general directbi* is large, and a relatively larger value when closer to the

J=1
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solution, i.e., when the backpropagation error is small. The l
value ofn is normally taken to be between 0.1-0.5.
The terma in the update equations is called the momentum, p‘:f:fﬁgt;f:g}";:f;fj;fk Write
and adds an inertial element to the training process, ensuring from the input space
that the update occurring is a fraction of the previous change. 1
This helps avoiding local minima on the error surface.
normally assumes a positive value less than 1. Write netlist for
Using the above equations, the backpropagation trainingl;c"u e Simulator

algorithm can be summarized in the following steps.
Step 1) Initialization: Select random initial values for the

weights and biases;;,, b, vx;, ande; lying in the range of Wi
rite O
—0.5 and 0.5. Call Simulator

Step 2) PresentationPresent the training sek;, & = (determine output)
1,2, ..., Q to the neural network. |

Step 3) Forward PassCompute the corresponding neural
network output vectoy,, k =1, 2, -, @ using (4)—(7). Fig. 3. Algorithm used for generation of training and test data.

Step 4) Update:Compute the batch backpropagation error

from (9), the error sensitivities using (14)-(18), and updajfie accuracy of the model during and after training. The test
the weights using (10)—(13). . set should be large enough to be representative of the entire
Step 5) Termination Condition Checkt £ is less than a j,nt space, and its contents should be different from those of

specified tolerance value end training, else update learning rgjg training set. The test set is used solely for the purpose of
(if necessary) and return to Step 2. validation of the model.

A more detailed description of the training algorithm can 1) The Size of Training and Test Data Sehe sizes of

be found from Haykin's book [29]. For the applicationghe training and test data sets depend on the size of the neural
presented in this paper, the Matlab implementation of thewyork, especially the input and hidden layers. These reflect

backpropagation algorithm [30] was employed. the complexity of the problem. While training proceeds, if it
is found that there is insufficient error convergence, or that the
C. Data Generation test error is significantly higher than the training error, it is

. . ndicative that the training set is not large enough, and should

In order to train and validate the neural network, two sels . : . )
. ) T e made larger. It is seen that in the models developed in this

of data are required. The first set, namely the training set, 1S

a set of data points representing randomly chosen inputSpa er, the size of the output vector is less important than that

the model and their corresponding outputs. The number oi-the input in determining the size of the training and test

: . L : E%I\ta sets. This is seen in Examples A-C. This is because the
data points needed in the training set is dependent upon et= h -~ f . fthe i v of
following: output characteristics as functions of the input are generally o

) ) the same shape, though they differ in quantitative values. So
* number of neurons in the hidden layer __the trend of variation of the output with respect to the input
» dimensionality of the problem, particularly dimensionalitye 5t with a smaller number of outputs (Example A) is the

of the input space; _ _ same as with a larger number outputs (Example C), so the
 complexity of the relationship between input and output;,e of the data sets remained the same.

Though a larger training set would give a better represen-
tation of the I/O space to be modeled, too large a training $8t \podel Validation
would result in a needless increase in the time invested in data . . -
generation and training. Hence, as small a data set as woul he model is validated at the end of training, as well as

fairly represent the entire range of operation of this model %eriodically during the training process with both the training
set and the test set. The rms error for #fith sample of the

used. . : )
The training set data are obtained through repeated digining or test set is defined as
line simulation using an accurate simulation technique; either n 27 1/2
an electrical CAD tool or an EM-field solver, such as those £ = [1 3 <M) ] (19)
previously described, depending on the nature of the outputs. ni3 di

The simulator is repeatedly called, each time with a netlisth

. N : inplyheren is the number of outputs of the neural netwayk; is
incorporating input variables randomly chosen from the mpie output as given by the neural network for ftth sample

space as shown in Fig. 3. Two files of data are thus obtained; is the corresponding actual output of the simulator, dnd
the input vector and the corresponding output vector, whic P 9 b !

constitute the training set. This is used in training the mode, Fhe arithmetic mean of the absolute values ofitiloutput
The training set can also be obtained as a collection of dgt%mts over the entire space
from actual measurements, or from a look-up table if available. 3 192

The second set of data, called the test set, is obtained in a di=—= Z | ki) (20)
manner identical to that described above and is used to test Q k=1
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Ep sep TABLE |
xR o NEURAL NETWORK INPUT PARAMETERS AND THEIR RANGE (EXAMPLE A)
_.""_h_ — - __"_F Parameter Symbol | Minimum | Maximum
i || | —| L " Conductor Width w 5mil 11mil
h Conductor Thickness | ¢ 0.7mil 2.8mil
i Separation Is 1mil 16mil
t Dielectric height h 5mil 10mil
prouns) plane Frequency f 1MHz 8GHz
cotsduc ki
hise Sclecine

0.45 T T T

Fig. 4. Cross section of three parallel interconnects (Example A).
0.4}

The average (test/training) error of validation is given as the 035
arithmetic mean of the individual errors over the (test/training) _ .|

: 5 i
set, i.e., &
o>
£0.25}
1 Q IS
2
Average Error= — E £k (22) g 021 .
Q= g
= z
0.15 4

where @ is the total number of samples in the set. It should
be noted that the validation error is different from the back-
propagation erroZ given in (9), which is only used in the 0.05¥ 1
backpropagation training algorithm.

The average test error is a good indication of how well the % 1 2 3 s 5 6
neural network has learned the relationship= #(X). The Time n hours
neural network is validated periodically during training withig- 5. Average training error as training proceeded for Example A.
the test set to ensure that the network is nwérlearning
which is when the mapping is being concentrated too mughq
on the specific data points of the training set rather than the
general function. When overlearning starts, the average test Cii Ci2 Cis
error begins to increase though the average training error and C=10Cun Cn Oy
backpropagation error continue to decrease. Ca Ca2 O3

Once developed, the model can be used to accuratelyrhe total number oL andC parameters to be simulated is

calculate the desired output for any given set of inputs. 18 Since the interconnects are identical in physical dimension
and have symmetric cross sections, one needs to consider only

IV. APPLICATIONS AND NUMERICAL EXAMPLES L1, L1a, Lyz, Ci1, Cr2, and Cy3, from which the entirel
and C matrices can be constructed. Hence,

A. Three Parallel Coupled Interconnects Y = (Ly1, Lya, L3, Ci1, Ci2, Ci3). (23)

In this first example, a configuration of three parallel inter- .
connects, the cross section of which is shown in Fig. 4, is mod-1 "€ Other per-unit-length parameters of the structBrend
eled for its frequency-dependehtand C parameters. During G would be modeled ina manner identical to thg[mﬁndC.
design optimization, each individual configuration would vary 1 N€ neural network model is implemented with features as
in terms of the thickness and width of the interconnects, t%@own in Table Il, which shows the number of inputs, outputs,

height of the dielectric, the separation between the cenﬁeﬂd hidden neurons. The technique used to generate data was
conductors, and the frequency of operation. Hence y off-line simulation using Northern Telecom’s SALI, an EM-

field solver [31]. However, any EM technique, such as those
X =(W,t, s, h, f). (22) described in Section | can be used. Training proceeded on a
Sun SPARCstation 10, the test error continually decreasing
The ranges of the individual input variables are given iwntil it leveled off at about 0.017. The average training error
Table I. The outputs of the model are the elements ofItheas training proceeded is plotted against time in Fig. 5. The test
and C matrices error, sampled periodically during training, followed the same
curve as the training error; however, it was marginally higher.

Ly Lz Lz The average test error was 0.0174 at the end of training.
L= [Lxn Ly Lo The neural network model was found to estimate thand
L3 L3y L3z

C parameters with an accuracy comparable to the field solver
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TABLE I
FeEATURES OF THE NEURAL NETWORK MODELS DEVELOPED
Feature Example A | Example B | Example C | Example D
Number of inputs (m) 5 6 5 18
Number of ocutputs to overall model 18 8 128 4
Number of outputs nodes in neural network (n) 6 8 30 4
Number of neurons in hidden layer (p) 10 10 10 40
Size of model (in floating point numbers) 126 158 390 880
Size of training set 500 500 500 4500
Size of test set 500 500 500 4500
Data Generation Technique SALI SALI SALI NILT
Training time (in hours) 6 7 7 48
Average training error 0.0162 0.0233 0.0348 0.0356
Average test error 0.0174 0.0253 0.0351 0.04
0.1 . ' ' . : . . . . o ep _'HE
0.09 . 0 ;

.

el s ﬂ...'"“-a:\;ll":'-'. comdurnors

e base diebecric

Fig. 8. Two asymmetric microstrip lines (Example B).

area of high noise
and crosstalk

o

o

@
T

rms error (normalised) over all six outputs
o
2 <
(3,
T

0 1 i ! 1 1 i i !
0 10 20 30 40 50 60 70 80 Q0 100

sample number 1/0 ; to different

Fig. 6. Test error for 100 random inputs from the test set (Example A). ICs

destination

—04“0
line of (I:ross section
-06}
Fig. 9. Eight-bit bus on a printed circuit board (PCB), showing region of
high crosstalk and signal noise.
-0.8|
c the test set are plotted in Fig. 6. Fig. 7 shows one of the
i o outputs, Cy3, plotted against a varying width of separation
2 as estimated by the neural network model and the EM-field
solver.
-1.2}- solid line — Neural Network Model
dashed fine — EM Simulation B. Two Asymmetric Interconnects
-14r : i The L and C parameters of an asymmetric configuration of
7 two parallel interconnects, as shown in Fig. 8 are treated in
16 . . . s . . . this example. The input variables are identical to those in the
0 2 4 6 8 10 12 14 16 . .
separation in mils previous example except that the width of the two conductors

Fig. 7. C13 as a function of separation, keeping other parameters const:thSt be given separately

in Example A. X = (Wl, Wa, t, s, h, f) (24)

used. The average test error in the results when these paramd&heir ranges are as given in Table I. As in the previous
ters were modeled for 100 random circuit configurations froexample, EM simulation is used to obtain thHe and C
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Fig. 10. Cross section of eight-bit digital bus.

parameters during off-line data generation. There are eight T T - T
outputs, namely the elements of tle and C parameter _1o°f : @
matrices o

Y = (L11, L1a, Loy, Loy, Ci1, Cra, Co1, Co2).  (25) ¢

Table Il shows the features of the neural network developeds -1 1
The accuracy of the neural network model was in the rangé
of the EM simulator.

o - EM Simulation
+ — Neural Networks

CininF:

C. An Eight-Bit Digital Bus Configuration

In this example, an eight-bit bus configuration as shown
in Fig. 9, the cross-sectional view of which is shown in Fig.
10, is modeled. In the region between the 1/0O pads and the IC
pin’s to which the inputs are connected, the eight interconnects-10;
run parallel to each other. This is a region of high crosstalk
and noise due to the eight metallic conductors, and is thigg. 11. The values of capacitances between conductors 1 g&tample
especially critical in layout design. o).

A digital bus is inherently symmetric in structure, and
consists of conductors of identical phySical Cross section. Thﬁ]ere the elements with bars are fixed at nomina”y average
inputs of the model and their ranges are exactly the same\@gues and not separately modeled. THematrix is similar
in the first example, as given in Table I. to the L matrix, except that all parameters are modeled.

The outputs modeled in this case are the elements of thence, the number of outputs for the neural network are 17
L and C parameter matrices, each of which contains 64 elements and 12 elements, resulting in a total of 30.
elements. However, since the interconnects are identical inThe main features of the neural network developed are
physical dimension, width of separation, and have symmetgighulated in Table II. It was capable of accurately predicting
cross sections, the 8 8 matrices are symmetric about bothhe 1, and ' parameters. Fig. 11 shows the values of the
diagonals. Thus the entie matrix can be constructed fromcapacitances in a given configuration as one moves away from
(L11), and 16 other values. Similarly, th€ matrix can be the first conductor on the left, i.e., the values on the first row

built from (C11), and 16 other elements in the matrix. Furtheigf the C matrix. Fig. 12 shows the error on 100 random input
in the case of the inductance matrix, the values of the elemepisints of test data.

farthest apart, namely.,s, L7, Los, and Ly; are extremely
small and, hence, are set to a nominally low average valyg. o Network of Four Interconnects on a

The L matrix is represented as Printed Circuit Board (PCB)

-1 o“‘?

n L P n L
3 4 5 6 7 8
n

Lyi Lz Lis L Lis Lig Lz Lis Here, a model to simulate the propagation delays of a signal
Lip Liy Lys Loy Lys Lyg Ly Lo propagating in a network of interconnects on a PCB, a typical
Lis Ly3 Lyy Lss Lss Lss Lay Lsg section of which is shown in Fig. 13, is developed. One IC
L— Liy Loy L3y Lyy Ly Lss Loy Lys pin acts as a source, from which a digital signal is transmitted
Lis Los Lss Lis Li1 Lsa Loy Ly to several other receiver (driven) IC pin’'s. The number of
Li¢ Les Lss Lss Lss Lii Loz Lis pin's connected to a given driver is related to the fan-out
Ls1 L7s Les Logs Loy Los L1 Lio of a typical pin in a digital IC. This model treats drivers
Lgy Lgo Lig Ly Lis Lz Ly Ly connected to four pin’'s. The electrical equivalent circuit of

(26)

the interconnects of Fig. 13 is shown in Fig. 14. A typical
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0.1 ; . . . . . ; . ; Table Il. Due to the large dimensionality of the problem, as
well as the nature of the input variables, the topology variables
in particular, a relatively high number of training and test
0.081 1 data points is used. Off-line data generation is done using
007k | NILT [32], which is a circuit simulation technique employed
in several industrial environments. Training proceeded on a
. | Sun SPARCstation 10, the test error continually decreasing
until it leveled off at about 0.04.

This example forms the basis of a neural network inter-
connect simulator which can be used in propagation delay
0.0 | 1 analysis. Based on the same principle, models for different
.02t sizes of networks (two to six) were built in [28], and used
to construct an interconnect network simulator. Substantial
speed-ups were seen to be obtained over existing techniques,
0 s - : . i especially in an optimization environment when a large num-

10 20 30 40 50 60 70 80 90 100 . . . .
Sample Number ber of circuits must be simulated. The speed-ups achieved
@nd their significance with regards to circuit simulation and
optimization are discussed in the following section.

o

=]

5]
T

ms error of output

Fig. 12. Test error for 100 random inputs from the test set for Example

V. DISCUSSION OFRESULTS

e B B e B =
[
o)
—_

A. Run-Time Comparison

In this section, the on-line run-time requirements of the
neural network models are compared with existing simulation
techniques.

The run-time requirements are compared with other tech-
nigues using the time required to simulate a specific number of
circuit configurations. During each iteration of the optimization
routine, the model is called once for every occurrence of the
structure in the system. A conservative estimate of the number
of times an interconnect model is to be called during optimiza-
tion, in an IC placement-oriented interconnect problem such as
described in [6], to obtain a reasonably, if not globally, optimal

dr3
1C3pp

.................. interconnections between different pins

typical signal path . . L .
solution in an optimization problem is taken as 20 000.
drl, dr2,dr3 - driver pins In Table 1V, the run-time required for estimating ttheand
rl,12,.t4 - receiver pins for signal from drl C parameters of 20 000 different interconnect structures of the
Fig. 13. A typical interconnect network with IC pin’s connected by severewpe modeled in Examples A-C, by EM simulation _and by the
interconnects. neural network technique are reported. A substantial speed-up
is seen.

PCB would consist of several hundreds of such configurations.'2P1€ V shows a comparison of run-time for electrical

During layout optimization of such a PCB, each individua?'rr1¥|r]""t'On of |20 000 PkCB s;rgcture; as modeléad n Examhple
interconnect network would vary in terms of its driver (source)" & neura’ network technique Is compared to two other

characteristics, its receiver pin load characteristics, the leng rently used simulation techniques, AWE [15] and NILT.

of the interconnects, and the network topology. The inp pe speed-up ratio obtainable by using neural networks over
e existing technique is shown in brackets.

variables to this problem along with their ranges of variatio
are given in Table Il

X I(li, R;, Ci, R, 1y, Vp, Gj) for¢ = 1,2, 3,4 o
. From the above examples, it is apparent that neural networks
andj =1, 2, 3. (27) N . . .

overcome many of the limitations of traditional simulation
The outputs of the model are the propagation delays at tteehniques. The most significant advantage is the substantial
four terminations, propagation delay being measured as theline speed-up offered. This permits designers to be much
time taken for the signal to reach 80% of its steady state valo®re liberal in defining critical paths to be tested and opti-
, mized, and in the number of iterations that are to be performed

Y =(n; for : =1, 2, 3, 4. 28) . T ) .

(7:) ’ e (28) in the optimization routine. Using neural networks as a fast,

The number of inputs, outputs, and the number of hiddem-line simulation tool can allow exhaustive optimization
neurons chosen for the neural network model are shownrivutines to be performed without too much concern over the

B. Performance Evaluation
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source

1]

R1 ~ Cl

EE— {ransmission lines

t142,13, 14 - Dropagation delays (outputs)

Fig. 14. Electrical equivalent of interconnect configuration, showing the outputs of the model (Example D).

TABLE Il would. In the above examples, the number of data points
RANGE OF INPUT PARAMETERS TO THE NEURAL NETWORK MODEL required in the training and test sets were relatively lower
Parameter Number | Unit | Minimam | Masimum than the number of data entries which would be required to
construct a look-up table for the same problem and range of
Interconnect length (1 4 em ! 15 variation. Given that the input spaces of the examples had
Termination Resistance (R;) 4| Ohms 100 { 100,000 dimensions varying from 5 (Example A) to 18 (Example D),
Termination Capacitance (C;) 4| noF 3.3 5 the size of the tables required for these problems would have
Source Resistance (%) 1| Ohms 133 .5 been very large, as each dimension of _the input space WOL_JId
cause the table size to grow exponentially. For example, in
Input Rise Time (re) 1 s 1.6 9 order to construct a look-up table for Example D, which had
Peak Voltage (V;) 1|V 8 5 18 inputs, even with three uniformly-spaced points along each
Source Edges (defining topology) 3|- 2 6 dimension, a total of 8 data points would be required, which

is notably larger than the 9000 points needed to train and test
the neural network model.
TABLE IV The run-time memory requirements of simulation using
?\loehﬁxgio&SEELUEN?MEEMRE?AL:DETY;ST(SEZ?;EF:F:)A)L neural network modeling techniques is also significantly lower
than using tables or EM simulation techniques. EM simulation
Method Run-time for 20,000 configurations programs based on methods such as FEM allocate large
EM Simulation 20-80 hours amounts of memory during run-time to evaluate structures with
large cross sections, and cannot be executed if such machine
resources are not available. This limitation is overcome by
neural networks, where the memory requirements, given by

Neural Network Model | 40-130 seconds

TABLE V the sizes of the models, are significantly smaller.
COMPARISON OF RUN-TIME FOR DELAY SIMULATION (EXAMPLE D) The large number of variables that a neural network is
, _ capable of simultaneously handling make neural networks
Method Run-time (Speed-up ratio) . . . . .

a viable alternative over polynomial curve-fit techniques. In
NILT 34.43 hours (310) Example C, 30 output variables were mapped simultaneously.

AWE : 9.56 hours (86) In Example D, the number of inputs considered was 18.

Neural Network Model | 6.67 minutes (1) High-order polynomial curve-fitting with 18 independent input

variables would prove to be significantly more difficult than
using neural networks. Low-order polynomial models such as

time required for convergence, which is a major concern wifffadratic models in 18 variables would have a much lower

existing techniques range of validity than a neural model.
A neural network can be developed for any defined cross
section which might be encountered during layout optimiza- VI. SUMMARY AND CONCLUSIONS

tion, irrespective of size or the number of conductors. Memory A neural network based approach to the characterization
requirements are not high, and do not grow exponentially withf high-speed interconnects, preserving the accuracy of ex-
the number of inputs or outputs added as a look-up tahging techniques yet simplifying their CPU requirements has
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been presented. The general technique used for developirgy J. E. Bracken, V. Raghavan, and R. A. Rohrer, “Interconnect simulation
neural network models for interconnects and interconnection With asymptotic waveform evaluation (AWE)[EEE Trans. Circuits

K in thi | i Syst. I,vol. 39, pp. 869-878, Nov. 1992.
networks presented in this paper can be employed to effgsy . Gilligan and S. Gupta, “A Methodology for estimating interconnect

tively model almost any kind of interconnect configuration or  capacitance for signal propagation delay in VLSI'8ficroelectron J,
problem one might come across in high-speed VLSI desigy vol. 26, no. 4, pp. 327-336, May 1995.

: . 1& U. Choudhury and A. Sangiovanni-Vincentelli, “Automatic genera-
The examples discussed show the potential advantages neuraltion of analytical models for interconnect capacitancdEEE Trans.

networks have over existing techniques, and the CPU resource Computer-Aided Designjol. 14, pp. 470-480, Apr. 1995.
savings attainable. The low on-line run-time neural netwofg? EESOf Inc., Microwave SPICE Users’ Guideestlake Village, CA,
models allow IC designers to perform much more elaborafes] A. H. zaabab, Q. J. Zhang, and M. S. Nakhla, “A neural network

CAD and optimization, thereby producing better design and &PPFO&Ch t(% hCIrCUItTopﬁmlfﬂgn angsitgtligggl geSIgrfgg% Trans.
c . : icrowave Theory Techyol. 43, pp. — , June .

yielding results, without expending the large amounts of CPly; g G. Hoskins anc)i/M. R. Haskarg,p“ArtificiaI neural network techniques

resources which would be required if existing techniques were  for the estimation of thick film resistorsMicroelectron J.vol. 26, no.

used. 1, pp. 9-16, Jan. 1995.
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